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Preliminary Remarks.

1. THE investigations presented in this paper consist of two parts; the first offers
a solution, in a certain qualified sense, of the general linear equation in finite differ-
ences; and the second will be found to give an almost complete analysis of the
resolution in series of the general linear differential equation with rational factors.
The second part is deduced directly from the results of the first, although the
subjects of which they respectively treat appear to be wholly independent of each
other.

With the exception of a few cases capable of solution by partial and artificial me-
thods, there does not at present exist any mode of solving linear equations in finite
differences of an order higher than the first; and with reference to such equations of
the first order, we are obliged to be content with those insufficient forms of functions
which are intelligible only when the independent variable is an integer, and which
may be obtained directly from the equation itself by merely giving to the indepen-
dent variable its successive integer values. It is in this insufficient and qualified
sense that the solutions here given are to be taken; and the first part of the follow-
ing investigations may be considered as an extension of this form of solution from the
general equation of the first order to the general equation of the nth order.

Linear Equations in Finite Differences.

2. A complete analytical theory of the general equation of the nth order,
u.v:P.vuw—l+Qmum—2+Rzu —-3+Swuw—-4+' '+W.rum—n+l+zwuw—n+Gm * . * (l ‘)

would involve its resolution into a series of equations of the first order of the form
um_P;u.r—lzG;)

1/ "
uw - P.z'uw—-l = Ga*’

u =P, =GP

(J%;j
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262 MR. HARGREAVE ON THE RESOLUTION OF LINEAR EQUATIONS IN

from which the complete solution would result, so far as known methods extend, in
the form

u,=P,P,..P, E(P TP )'l' +PPPYPYS (P(n)PE; >P<n) )

w+1
or in an expanded form,
um=G.; +P;G;—1 +P;«-1P;G;—2 +P;—2P;~1P;G;—3 +’+C,P;nP;n+1P;‘

+G, +P.G,_, +P._.P.G,_, +P,_.P, PG, s +...4¢'P,P,.....P,

+ .

+ . . .
+G+ PG, 4P 1P<">G<.’22+P“22P("’ PG+ e (”)P“"P‘”Z,. P,
The last column contains, as is well known, the general solution of the original

equation deprived of the term G,; and the remaining columns contain the particular
solution of the original equation.

3. The investigation the results of which are given in this part, although it actu-
ally succeeds in solving the original equation, will be found to contribute little or
nothing to the analytical theory as above explained ; and this arises from the circum-
stance, that the particular solution, instead of being produced in the separated form

above written, is produced in an aggregated form,

G,+AG,,+BG,,+...;
and the complementary part of the general solution, instead of being produced as
above, appears in the form of a sum of the complementary functions above written,
the constants ¢/, ¢’, &c. being the same in all. But as we shall thus obtain a solution
with an arbitrary constant, capable of solving the original equation deprived of G,,
we have it in our power to solve the equation completely by reducing the order of

the equation in successive steps.
If we take the equation of the first order,

u,=Pu, ,+G,
and arrive at its solution, not properly by any analytical method, but by giving to «
the successive values
x, x—1, x—2..... m-+1, m, m—1,

and eliminating all values of », between the first and the last, we have
u,=Pu, ,+G,

=P,(P,_,%,,+G,.)+G, or P.P,_ju, ,+P,G, ,+G,

=P,P,_,(P,_, s+G,5)+P.G,.+G, or P.P,_,P,_su, s+P.P, .G, ,+P,G,_,+G,

=(PwP —1e "Pm)um—l_l-(Pw"Pm+l)Gm+(P.z" 'P'm+2)Gm+l+ e +Pwa—le—2+PmG -1 +Gx
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m+1 ,z*—2 G‘z«
=(P,.. Pm){ m—1+p +p bttt 2+P P +P,,,...Pw}

=P...P,(Spp—te) s

which is the solution ordinarily given, though it is arrived at by a process somewhat
less coarse than the above.

By applying the same process of successive elimination to the general linear equa-
tion (1.), and carefully observing the law by which the entrance of the factors
P,,Q,, R,, &c. is governed, it will be found that an exactly similar solution may be
found in the form

u=eJP P <2( ”Ji)lHl)—I—c)J,

or
u,=G,+P,G,_,+¢(P.P,..).G,_,+¢(P,... P,y) .G, s+ .. +¢°(P,... Pt ) .G, F- 2 (P,... P,.) 5
where v denotes the sum of a set of distributive operations V,, V,, V,, ... V,_, not of
a strictly algebraical character, which are capable of being performed only upon fac-
torial expressions containing consecutive values of P,, and which have the following
significations. 'V, denotes one operation of this character, signifying that the factor
P,_. P, is changed into Q, as often as it occurs, any term in which it does not occur
disappearing, and the sum of the terms thus obtained being the result of the opera-
tion ; so that, for example,
V,(P,_.P,)=Q., Vi(P,_,P,)=0,

Vl(Pm—zpw—lpw)=Qw—1Px+P —2Q.r) V?(Pw—2Pw—le)=O)
Vl(Pm—SPm—ZPw—le) =Q.z‘—2p.z‘—lpw+P —SQw—lP.r+Pw—3Pw—2Qm V?(PM—SP‘V—2P@‘—IPx>=2Qx—2Q,n
&c. &c.

Again, V, denotes another operation of a similar character, signifying that the
factor P,_,P,_,P, is changed into R,, as often as it occurs, the result of the operation
being as before the sum of the terms; so that, for example, we have

V2<Px—2Pw—1Pw) '——"R@.,
VQ(P.z-—-:SP.z'-2Pw lP )= x+Pw 3Rm
Vy(P,_P,_,P,_,P,_P)= R,, L. P.+P,_R,_P+P,_P, .R,
Q(P, 5ee .P,) =Rw—3P1—2Pw—1Pw+Pw—sR'z’—QPw—-le+P-z‘—sp.z‘—4Rm—le+Pw—spw——‘ipw—sta
Vy(P,_;...P,)=2R,_,R,, &c. &c.;

V, denotes the change in a similar manner of P,,_,P,,_,P,._,P,, into S, ;

V.-, denotes the change in a similar manner of P,,_,,,...P, into W, ;
and

V... denotes the change in a similar manner of P,,_,,,...P, into Z,.
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It might at first sight be supposed that this process, if successful at all, would give
the complete complementary solution in the form

u,=ce’(P,..P)+ce’(P,..P,)+..;
but it will be found that in reality this introduces only one arbitrary constant.

It now remains to place these expressions under a properly algebraic form, and to
verify the result; and in order to do this we must express the general term ¢'(P,...P,.,)
in terms of the factors of the original equation; and afterwards give to p, which in
the first instance is regarded as a constant, the successive values required for form-
ing the several terms of the solution.

This may be done as follows :—

Lot = LI S e = d
¢ Pﬂ'—IPw—q” Pz—2 x—-le—rm Pz—-3Pw—2Pz——le_S”.“Pw—n+2n.Pw—ww’ an P

p—nt1ee

X

I
.P,, &

Then it is easily seen that
Vl(Pw"'Pp+l)=Pw“'Pp+1{qp+2+qp+3+"'+9z*}:Pw"'Pp+lE;+19x+l)

V2(P.z*' . °Pp+l)=Px° . ‘Pp+1 {rp+3+rp+4 +' "+rz~} =Pm°' . Pp+lE;+2rw+13
and generally

D(Pz’"'Pp+l)=P.z""Pp+l{2ﬁ+lqm+]+2;+27‘w+1+2;+3sz-+1+”'+2:;+n—2wz’+l+E:+n—1zw+l}'
To find V? (P,..P,,,), it will be convenient to proceed by steps, beginning with a

small number of terms.
Thus

1y,
Vi(P,...P,_)=(P,...P,_3) (9.4 o+ ¢._2), 3 Vi(P,...P,_)=P,...P,_3(9.9.-2)

Vi(Pro Pol) = (P P ) (et er oot Gas)s 5 ViPun P ) =P P (0 Gumat Gim) i)
Vi(P,...Pos) =(Po .. Posi) (@ or + Geat Gus o)

AVPe P ) = (P P ) (0 GesF oo b o) F GG ) F G etls) O

and generally, V,(P,...P,,,) being P,...P,,,(3;..¢.+), We have

1 2 2—2 2 — +2
B Vl(Pm "Pp+l)=Px“ -Pp+1(9x2p+17m+1+‘]w—12p+?%«+1+ . '+9p+422+17m+1)

2 =1

=Pw---Pp+12:+3(9w+1 p+1¢/w+x)-
Similarly, it will be seen that
1 X a—1 2—1 ]
ﬁ V::(Pw"'Pp+l)=P.r"'Pp+12p+5(9m+12p+3(qw+1Ep+lq,r+l>)3 and so on.
In like manner we shall find

]. D 2 2~2
0] V;(l).v" 'Pp+1) =P.z""Pp+12p+5(rx+12p+2rx+l) ‘
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1 @ a— &—
2.3 V;(Pw "Pp+l) =P.,.. 'Pp+12p+8(rz'+12p+§(rw+12p+:rx+l)), and so on,
1 - o
2 an(Pr . Pp+1) = (Pw Pp+l)2p+2m+l(vw+12p+mvw+l)9

1 - -
2§ V::n(Pw" Pp+l) = (Pz" * Pp+l)2:;+3m+2(vw+12:+sz+l(vz+12;+sz+l))) and S0 On)

v, being that term of the series ¢,r,s,, &c. which corresponds to the operation V,,, as
g, corresponds to V,, r, to V,, &c.

V,\Vy(P,...P,.)=P,...P,..3 . .(r. .2, 10,11,

Vle(Pw...PpH):Pw...P,,“Efﬁmﬂﬂ(tﬁlﬁﬁlinvwﬂ), (¢, corresponding to V),

VIV(P o Pr) =P Py 3 (e B (fe Sirt0,00)), &e. e,
Finally, if N, ,+N; ,+N_ ,+.. represent a series in which

A N @ 2
1\.z,p— 1) N.z', pT “p+1 q.t+l + 2p+27..z'+1 + . +2p+m——lzx+1)
and generally

N =3 0@ N2 ) 3 e (N ) 3 s (50 N ) e
3o 00N ) F 2 s (N )
then, if this series be called N, ,, we shall find that ¢’(P,...P,,,)=(P,...P,, )N, ,.
It may be here observed that the number of the terms of the series N, ,+N; +..

cannot exceed %(m-—p)—l—l when #—p is even, and —IQ-(m—p—l— 1) when x—p is odd ; and

since p has the successive values x—2, r—3, &c., it is always known whether x—p be
odd or even. The number of terms may be less; for if Q, be zero, the number of

1
terms would be the next whole number above 3(x—p), &e.
That the equation
u,=c(P,...P,,,)N, ,
is a complementary solution of the original equation, or in other words, a solution of

the original equation wanting the term G,, may be directly verified ; for we have
u,— P, ,=c(P,..P,. ) )(N, ,—N,_, ,)
=c(P,..P,,,) AN,

a=1,p°

Now AN, ,=0,

AN, , =g +rts+ . 20

ANZ ,=¢N. 4N AN o0, N N,
and generally

(a+1) __ (@) (@) (@) (@)
ANw—l, y A quw—z, p+rwNw—3, p+SwN.z'—4, p+ e +wa~NZ—n+ 1, p+ sz(a)

x—mn, py

whence

d ANw—l,p=qu.z‘—2,p+rwN ~3,p+SwNw—4, p+ .. +wwNw——n+l,p+sz.r—n,p9
an

uw_Pwuw—l’-: Qwu -2+Rwuw—3+smu’w—4+ . +Wmux—n+l+zwuw—n'
MDCCCL. 2 M
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In this part of the solution, I apprehend that it will not generally be necessary to
have regard to the lower limits, since p may have any constant value, and that value
may be taken which is most convenient in each case; and if we make p=—cx, all
the lower limits will have this value.

This part of the solution would then be

u,=cP,....P,{14+A,+B,+C,+..},
Aw=2q.m+1+27'w+1+23m+1+--+2ww+1+2zm+1 H

and generally each term of the part within the brackets is formed from the preceding
term thus: first change x into x—1, multiply by ¢,.,, and effect a summation ; then
change (in such preceding term) 2 into x—2, multiply by r,,,, and effect a summation;
and so on until lastly we change « into x—n-+1, multiply by x,,,, and effect a sum-
mation ; and the sum of the parts thus obtained is the next term.

The verification of the particular solution is easily derived from the above; but it
rests on the assumption that the algebraic value above given for &'(P,. .P,.,) is correct;
to which therefore particular attention is directed.

The equation

where

u,=ce’(P,..P,..),
considered as a solution of the original equation wanting the term G,, implies that
¢(P,..P,.,)=Pe(P,_..Ppi)) + Q' (Prese . P )+ R (Pos. . Py ) .+ Z8 (P, .. . P,y
Now in order to verify the particular solution,
4, =G+ PG, +¢(P.P, )G, ,+#(PP, P, )Gy ot 42(P,.P, )Gy
it is only requisite that

gv(Px--Pz—p+l) =Pwﬁv(P —1 'Pw—p+1) +Qwev(Pm—2"P.z‘——p+l) + RwED(P-z'—3"Pm—p+l) +' ‘+Z.z‘ev(P-z—1L' 'P.zr——p+l) ;

and this is true, for it is identical in form with the equation last above given, not-
withstanding the occurrence of x in the lowest value of P, for this lowest value re-
mains the same throughout the expression.

7. If P,=0, the expressions ¢(P,...P,_,) reduce themselves to those terms which
do not contain any value of P. It would not be difficult to determine generally
what terms these are; but probably the most convenient general method of arriving
at the solution in an algebraical form would be to make P, equal to a constant 4, and
to make & equal to zero in the result finally obtained.

8. The above particular solution of the original equation is in such a form that the
general term of the indefinite series representing the solution is given in explicit
terms ; but that general term may be represented in an implicit form, which perhaps
is more convenient for practical use.

By attending to the formation of the successive expressions ¢'(P,...P,), it will readily
be seen that the series

MoGw+ MIG.@:-—I + MzG.r~2+ o + MPG@,,], + .
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is a solution of the original equation, if
M,=1,
M,=P.M,,
M,=P, \M,4+Q.M,,
M,=P,_,M,+Q._,M,+R.M,,

Mp; Pw—p+lMp—l +Q.z’—p+2Mp—-2+ R.z'——p+3Mp—3+ .. +W.r—p+n—-1Mp—n+l +Zw—p+nMp—n 5

which last is a general relation determining the coefficient of any term from the
coefficients of the » preceding terms ; or from the coefficients of all the preceding terms
when the number of these preceding terms is less than n. This relation is the equa-
tion of formation, and may be regarded as universal, bearing in mind that when p
is less than » some of the terms of this relation vanish.

The solution of the original equation is therefore reduced to that of a similar
equation without second member : and, by what has preceded, this solution is

M,=e(P,_ps1....P,),
it being understood that M,=1; and this is the value of M, before given.
But the value of M, may be found otherwise, thus:
Make P,_,.=P, Q,_,..=Q,, &c. &c.
Then the solution is evidently
M, =¢(P,..P),
where the operation v has the same meaning as before, except that it is applied to

the accented letters.
Consequently

M,=(P,..P){14+A,+B,+C,+..},

Ap=219;)+1+22r;)+1+"+E.z'—lz;)+1)
B,=24(g,418p-1) +25(rp 018y o) oo F 21 (R 11 Bpiin)s
and generally the terms are formed as stated in section 5, using p for .
9. I shall conclude this part of the subject with a few simple examples for the pur-

pose of illustrating the processes here given.
Ezx. 1. Let the equation be

U,= auw—l + bzuw—2+ Gw‘
That part of the solution which is independent of G,, is

where

u,=c{a"+(x— l)a”‘262+-;—(m——2)(w—3)a”‘*b“+2i.3(w—-3)(@—4)(m—5)a“‘6b“+...} ;

2 M 2
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and since in the present case P, and Q, are constants, we have
- 1 2 - 1 -
M,=a -+ (p— 1)@ b 45(p—2) (p—3)a b+ 55 (p—3) (p—4) (p— )B4
whence the particular value of , is a series of terms of the form

G,+0G, .+ (@*4+-8) G,y (0208 G,y + (0 43081 G,_ o4 (6 + 405 306" G,y

The difference in character between the solution proposed in this paper, and that
which would result from a perfect analysis of the general equation, may be exempli-
fied by the present instance.

The perfect solution of this equation is known to be

ﬁ( wIoer_ gey 5::?),

where o and 3 are the roots of 2—af—62=0, and each 2 introduces a constant.
Now if the constants be made equal, and the expression be written at length, we
shall obtain the form derived above.

The expansion of the two terms within the parenthesis gives

G +oG,+ G, +..+ G, 4. . o

G‘H,+ﬁGm+ﬁ2Gw__2—|—..+@p+le+...—I—Cﬁ” 5
and if the difference of these be divided by a—f3, we get

and

.__ﬂp+1 ax_ﬁw

m_1+ R G,+..+c

which is the same in effect as the result which we have obtained.
Ex. 2. Let the equation be

uz':xum— 1 +au.r—2'
Then

uw=cI‘(x+]){l+a2 m F-a?> (w(w+1) > x(x+l)>+}

1 a3 1

-1
=Cl‘(d’+1){1 —8 T T T s == T }

_—:C{I‘(x—}—l) — alw4% T(e—1)— g%r(w—2)+..} :

which may be put under the form of the definite integral

& - o
um'—:cf e dy.
0

If we add a second member G,, the equation for determining M, is

M,=(z—p+1)M,_,+aM,_
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whence »
1 1 -1 1
M=o s : )]
=2 (@ f’*‘){‘+“21(w—p+1><x—p)+“ 2\epi0e—p > @prne=p/)T

—z...(a— p+1){1+a( STTs)

+e((emraerrene=n) "empri—is)) + )

from which the series for », can be expressed.
Ezx. 3. Let the equation be

Uy=aU,_,+ XU, _,.

Then

0= ca"“{] 42T (o4 1)+ 52 (e D) (1) + }
=c{a”+%x(x+l)a ‘2+2~_1;1(w+ a(x— l)(w—?)a”“‘+§—'§i—3(x+ Dz...(x—4)a"%4 }
Ex. 4. Let the equation be

uw:g"%—:“"czu —ge
Then

=P«——(x”: 1){1 + Si(@—1)a(@+1)

+§(§ (r41)a(@—1)(r—2)(@—3)(@—4)+ & (1+ Da(a— Diz—2)(¢—3)) +}
Ex. 5. Let the equation be
ux=Pwux——l +xPxPx— luw—2+G.v'

Here
) " +1 1 2
=2, Nm,jz=l, Nw,p'—_'—x(xQ )-—-(p+ )2(P+ ))
N =(v’”+l)x(w—l)(x—Q)_(P+2)(P+1).(~"f+1)x+(17+4)(19+3)(1’+2)(1’+1)
a,p 2.4 2 2 2.4

N® —(@t+lel@—1)(@—2)(@—3)(@—4) (p+2)(p+1) @+1)z@@—1)(z—2)
ap T 2.4.6 - 2 2.4

(p+4)(p+3)(p+2)(p+1) (+1)z_ (p +6)(p+5)(p+4)(p+3)(p+2)(p+1)

+ 2.4 T2 2.4.6
N<m+2>_(w+1)-~(w—2m)_(p+2)(19+1) (»'v+1)--(w—2m+2)+(1)+4)--(10+1) (@+1)..(z—2m+4)
np T 24..(2m+2) 2 ' 2.4..2m 2.4 T 24..(2m—2)

4 pt2m.(p+1) (4 1)z (p+2m+2)..(p+1)
tT 55 om 2 U 24.2m+2)
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The particular solution, therefore, is
u,=G,+P,G,.,+(1+2)P.P,_,G, ,+22P,P, P, ,G, s+ (s"+2—2)(P,..P._,)G,_,
+(322—52—2)(P,..P,_)G,_;+(#*—1104-6)(P,..P,_,) G, _s+.... 5
and the part of the general solution found by this method is

P, ) (14 =) ey ),

Ex. 6. Let the equation be
U b Pty A+ PPty ot A0, (PP = G,
then the equation for determining M, is
M,+,P, e Mya,Po oy aM, oo 0Py Py )M, =
or making
P.r—p+l""P

M,+aePM,_ +a,PP, M, ,+..4+a,P,. P, ..)M,_ =

the solution of which is evidently the solution of
M,+aM,_,+aoM, ,+..4+a M, =

multiplied by (P,..P)).

Let t"+at " +at+. . +a,) ‘——+ —5+-

then M,=(P,..P){c,Aer*"+c,BB?*"+..};
and taking the parts affected by each constant separately, it will be seen that the
original equation reduces itself to a set of equations of the first order,

v,— P, =" 'AG,,

v,—PBPuv,_,=B""BG,,

so that its complete solution can be adequately represented.

Solution of Differential Equations in Series.

10. I now proceed to point out a method by which the processes above indicated
may be made to give solutions of certain general forms of linear differential equa-
tions.

In a paper on Linear Differential Equations presented by me to the Royal Society,
and which the Society has done me the honour to publish in the Philosophical Trans-
actions (Part I. for 1848, p. 31), I have enunciated, and so far as is material to the
present purpose, demonstrated the following theorem :—

That if, in a linear differential expression ¢(x, D)u=X and its solution u=+(z, D)X,
the letter « be changed into the operative symbol D and D into —x, we shall thus
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obtain another linear differential expression ¢(D,—x)u=X, the solution of which will
be u=+(D,—x)X.

In the application of this theorem, care must be taken that the first-mentioned
solution is so written that the operations included under the function + are not sup-
pressed ; and it must also be borne in mind that the expressions obtained by this in-
terchange of symbols will not in all cases be obviously interpretable.

For applications of this singular analytical process I beg leave to refer to the me-
moir above cited, where it is employed for the solution, in finite terms, of extensive
classes of linear differential equations, and equations in finite differences. So far as
the process is legitimate, it is to be observed that it is founded on reasoning of a
purely analytical character. It does not in any manner whatever flow from the
calculus of operations, or depend for its validity upon the soundness of the logical
basis on which this calculus rests.

Now it is a remarkable property of this mechanical interchange of symbols, that it
instantaneously converts a linear equation in finite differences into a linear differen-
tial equation ; so that wherever the former is soluble, the latter is soluble also, pro-
vided the result be intelligible, a condition always satisfied when the functions em-
ployed are rational algebraical functions.

As an instance worthy of notice, let us take the example last above given (Exz. 6.).
Bearing in mind that w,_,=¢""u,, the proposed interchange gives the equation (writing
ox for P,),

u+a,0(D)(¢u) +a,p(D)o(D—1)(¢*u) + .. +a,0(D)..0(D—n+41) (“u) = G;
whose solution, therefore, depends upon that of
v—ap(D)(sv) =a""'AG,
a proposition established by Mr. BoorLe by the methods of the Calculus of Opera-
tions.

I propose, therefore, now to employ this theorem of the interchange of symbols for
the purpose of converting the forms of solution, above given, of equations in finite
differences into the particular solutions of some general forms of differential equa-
tions; viz. those equations whose factors do not contain any irrational or transcen-
dental functions of x, or contain them only in the form of series of ascending powers
of x.

11. Mr. BooLg, in his General Method in Analysis, has shown that expressions of
this character may be placed in the form

SuD)u+£(D)(u) +£(D)(#u) +.. =,
by changing the independent variable from x to its logarithm ¢, and making use of

. d
the relation, (D being Eé)’

D(D—1)..(D—n+1 )a:mn(g;)"u.
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Making use of this relation, we immediately convert our equation, which we assume
to be in the form
d -1
(an+b ‘Z’+ +k wp—l_l_l xp+ )d +(an-l+b —lm+ +Ifn— x]p—l_l_ln 1‘T + )dxn—u
F oo (agFbpx+ .. +hr L2+ )u=G
into
4,(D.D=n4Dut b (D=1)(D=1))( )+  ,(D=2)ee(D=0=1)) ()4 +  L((D=p)os(D=nmp+1))(,P0U)+..

(D =1)e D=+ 1)(u) 48, _,(D=2).. D=0 ))(%)~+ by, (D=p) (D=n—p+2))(P%)+.. —0G.....(2)
+p—o((D=2)e(D~0A+1)) (%) oo +Ey_o((D ) (D—n—p+3))(sP%)+...
+ “+.
or
a,,u+(§z_<D n)+a,_ )( ) +(en(D—n><D—n;)1(;)+_bl).l<D—n)+an_2)(£29u)
+(d"(D_n)(D_n.‘1)(D_n_2)]-;—(01;:11()1()1_)_2)2(;)_n-—l)+bn_2(D_n)+an'3)(eaou)+...=(D..(D—n+l))—1(EMG).
Now if in this equation we change D into ¢ and ¢ into — D, we obtain the equation
in finite differences (which suppose to be of the nth order),
b—n)+ @, e (0—n) (0 —=n—1)+b,_ (0 —n) +a,_ .
a u9+”*(“—-)——~*— U1+ X 9(9)_1) 10=n) 2Upg e = (00 =1)..(0—n+1))"'G,_,,
or

0+;“10 Uy, +§Qg u9_2+:;‘-39u0__ — (ﬁ)ﬂ) "lGo_n: Ho__n (SuppOSE) :

the solution of which, by section 8, is of the form
u0=M0H0~n+M1PIO—n~l +M2H0-n-—2+ oe +MmH9—n——-m+ eoey

where M,=1,
,+}£‘6 =0,
A1) b,
M.+ 76— M+ 75 Mo=0,
fill—m+1) fll=m+2) y (§—m4r
Mm'l' fo(a_m_l__ 1) m—1+£@_—m+§7 _2_|_ _|_f n ) Mm-r=0-

Jo@0—m+7)
Restoring the symbols, and thereby converting H,_, into ( f;(D))“‘(e""G), which call

H, we have
u=MH-+M,(¢H)+M,(*H)+ ..+ M, (e“H)+...,
where My, M, ... denote a series of operations having the following significations and
relations;—
M,=1,

D)y
M, +7,0) Mo=0,



FINITE DIFFERENCES AND LINEAR DIFFERENTIAL EQUATIONS. 273

AD=1 3 AD)
Mt 7o = Mt 7 Me=0:

fHi(D— +1) f2(D—m+2) f(D=m+7)
Mm"l“j'(@-;_—:;—_'_—l) m—1+f(D m_’“+2) m—2+'°'+ﬁ)“(T)T_‘:&7mMm-r=0;

or, by passing ¢, ¢, &c. outside the operations by the equation
o(D)(eH)=¢"p(D+m)H,
u=MH+MH+*MHA4-.. 4+e*M, H4-.., . . . . . . (3)
where the general law of relation is

SiD+1) fQ(D+2) (D7)
m+f D+1 Mm—l+f(D+2) m—2+ +f0(D+7")

M,,_,=0.

Now the expression H, which is the subject of all the operations, contains » arbitrary
constants, since fj(D) is of the nth order; that is, provided a, is not zero.
Let 8, B,...3, be the roots of fit=0; then the complete value of H is

(FAD) (G o4 o4,
of which the first term will give us the particular solution of the original equation,
and each of the other terms a complementary solution. Bearing in mind the equa-
tion ¢(D)(e”’)=¢p.¢”, we see at once that the first complementary solution is

PP (A FAL+HAL . A,
o, (Ay+Ax+A 4. +A2m+ ),

where A;=1, and the law of formation of the coefficients is
./:)(Bl +7n)Am+.f.l(6l+m)Am——l +./'2(61+m)Am—2+ .o +./;'(61+m)Am—r=O ;

and the remaining complementary solutions merely require the substitution of 3,...3,
successively for 8,, with new constants.

The reader will not fail to perceive the peculiarity of the series when a, is unity,
(which value it can always have when it is not zero); for in that case the roots of
Jfot=0 are the natural numbers from 0 to n—1 inclusive, so that the series begin re-
spectively with the terms 1, «, 2%, ...2""".

If a, be zero, that is, if the factor of the highest differential coefficient of % do not
contain an absolute term, then in order that the transformed equation may take the
form (2.), it will be necessary to pass ¢ cutside the operative functions in each term,
and divide by ¢. The initial function £t will then be of the form

ba(t...(t—n+1))Fa,_,(t...(t—n+2)),
(So(D))7H ("M@,

Similarly, if in addition to a, being zero, we have also b, and a,_, respectively equal
to zero, it will be necessary to pass ¢ outside the operative functions, and divide by
MDCCCL. 2N

or

and H will be
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¢’; and so on if other terms of the factors are wanting. Thus we can in all cases
obtain the transformed equation in the required shape; but in all the cases where
coefficients thus vanish, there is the important qualification that fi¢ is no longer
necessarily of the nth order; so that H does not necessarily contain the proper
number of arbitrary constants. The consequences of this consideration will be after-
wards developed ; in the meantime we proceed to consider what modifications the
series undergo where f¢ has two or more equal roots.

12. If there should be two roots of fit=0 equal to 3,, one series will be deficient ;
and it will be supplied as follows. The expression H, or (f,(D))~*(*G), contains in
that case a term of the form £,¢*; and it is easily seen that

P(D)(¢)=09(D) () +¢'(D) (&)
The wanting series is, therefore,

k,a:ﬁ*{log r(1+Az+A+.)+(Ae+Ax+..)},

where

_ A,
A= 8, &ec.

If there should be three roots of =0 equal to 3,, two series will be deficient, one
of which will be supplied as last mentioned ; and the other by the introduction of the
series

ko {(logx)’(1+Ax+ A2 +..)+2 log (Al +Ayr’+.) + (A +Ajr®+.) ),

. 2
where A’,’::%éi‘él &ec. ; for we have a term £,0%"°; and it is easily seen that
1

o(D) (%) =p(D)e** 4-20¢' (D) 40" (D).
And generally since, where there are p+41 equal roots 3,, we have terms
S N S s SIS B P

and since

o(D) (076%) = 0rp(D)e*+ ptv=¢/ (D)4 p L2 20020 (D)o ...

the deficient series will be supplied by the following, taken with a different constant
for every value of p from unity upwards:

kpx”"{(log 2 (14 A+ Aat+.) +p(log &) (Alw-+ A +..)

+pfi—2‘—1-(log 2y} (Aje+ Ay +.)+..+plog m(A?’“’m+A;"“’x2+..)+(A§”’x+A;”m2+..)}.

As a matter of convenience, when the equal roots are zero, a temporary nominal
value should be given to them for the purpose of differentiating A,, &ec.

13. Hitherto we have attended especially to the complementary sclutions, or in
other words, regarded G as zero. The operations, however, indicated in (3.) may be
readily performed when G is a rational function of 2; which we will suppose to be
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cleared of fractions, and so cleared to consist of a set of terms «,#?. Then for this
term (So(DN7EG) = (fy(D)) '™ P =e,(fo(n+p)) e 7* 5
and we have, as before,
u=0,2""?(By+B24+Byx?>4..4 B, 2" +..),
where B,=1, and the law of formation is

Sin+p+m)B,,+fi(n+p+m)B,_,+fi(n+p+m)B,,_o+...=0;
and the whole solution is found by taking all the values of p. This will undergo a
slight alteration, as the incipient term will be of the form fj(D)(e"~"’G), where r factors
of (2.) vanish by reason of some of the constant coefficients a,, &c. being zero.

In like manner it would be easy to represent the series if G contained log « and
its powers; but for most other forms it would be necessary to expand G in order
to represent the series explicitly. The solution however is theoretically complete,
since it consists solely in the performance of operations which are known explicit
functions of D.

14. Before proceeding further with the main subject, I shall illustrate this process
by a few examples.

Ez. 1. Let the equation be

(1 —|—b2m+02x2)%;+(al+blx) %—I—aou:G.
Referring to (2.), we have
£D=D(D—1), £iD=b,(D—1)(D—2)+a,(D—1),
Jo(D)=c,(D—2)(D—3)+b,(D—2)+a4;

roots of fyt=0 are 0 and 1.
First complementary series,
(Agt+A A2+ A2 +..),
where '
Ay=1,and m@m—1)A,+ (by(m—1) (m—2) +a,(m—1))A,,_, 4 (cy(m—2) (m—3) F-by(m—2) -+ ap) A, =0
is the law of formation.
Second complementary series,
cot(Ag+Ax+ A2 4. A 2™+,
where
Ay=1,and (m+41)mA,~ (by(m)(m—1)+am)A,_,+(cs(m—1)(m—2)+b,(m—1)+a,)A,_,=0
is the law of formation.
Particular solution,
u=y(D)H -+ (D)H+eyo(DYH+. . 44, (D)YH+. .,
where
d\~2
H=(Z;) 6 $o(D)=1, and fyD+m) o (D) HA D+ 0 (D) /D4 (D) =0
is the law of the formation of the operative functions.
2N2
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The three laws of formation, which are here written down at length, are in sub-
stance the same ; for from the last the others are made by merely writing the roots
successively in lieu of D in the factors.

Ex. 2. Let the equation be

(@4 g0) T8+ (-pa+590%) o A (pr—ri+ (4g+7)2Yu=G.

Referring to (2.), we have in the first instance,

((D—2)2—n*)(®u)+p(D—2)(u) + (g(D—4) D+ 49+4r)eu =G,
whence :
(D= )u-pD () + (D) () =G
roots of f;#=0 are n and —n.

First complementary series,

o™ (Ay+Ax+A2+..+A2m4..),

where :
A,=1, and ((n+m)*—n*)A,+pn+m)A,_,+(q(n+m)*+r)A,_,=0
is the law of formation.
Second complementary series,

M (Ay+ A+ A4 ..+ A2 ),
where the law is, as before, changing the sign of n.
Particular solution,

u=y(DYH 44, (DYH+ .. 470, (D) H+ ..,
He= (D* )~ (:*G), $(D)=1,
(D+m)* = 7)Y (D) +p(D +m) Yy, (D) + (gD +m)*+r)d,_o(D)=0

is the law of the formation of the operative funotions.
If p=0, g=0, and r=1, so that the equation becomes

where

and

d*u du
v* =5 +a -+ (@ —n")u=0,
the law is
Am-—2

Ap=— m(2n+m)’

whence

u=c,x"{l — 1402 s (1) (24n) et s (14m) ™ (24+n) ™ (3 +m) 2+ }

] 1 1
—l—czm""{l — 1 (A=m)72+ = (1—n)"(2—n)"2" — 151z (1—=n)7(2~n)"}(3~—n) 2"+ 1
Evx. 3. Let the equation be

a3 d? di
z° @u +3w20—l£ +xz;§ +qgru=G.
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Referring to (2.), we have
Du+qgeu=G;
Jo(D)=D?; three roots equal to zero;

J-D)=¢;
m*A,,+qA,,_,=0, law of formation.

Hence the complementary series are,
— __l 12 __q_ q 2n i q q 3n
u-——C,{l n3 X + ng (2n)3.Z‘ - n3 (2”)3 (3n)3 X "I" .o ..}

+C‘*’{‘°g (1= 47+ ™ B Pt )

+3 _hgx ( +2n n3(2n 2n+( +2n+ %(%5(31)3':03"4_)}

7 <3i>sw3"+--)

+6logz ( B ( + 2n)n3 3$2n+< +3, 271. + 3. 3n n’ (23»)3 (3%)3‘123"-‘- )

+03{(log x)? (] - ;%x”+ % (22)3 " — fg {

+6( R (m + (zn)2 + n(2n)>n3 ek

Z 3 q q q o -

and the particular solution is ,
u=H - gz"(D+n)*H4¢g*2(D+n)*(D+2n)*H—...,
H being D3(e*G).

15. The completeness of the preceding forms of solution depends, as above inti-
mated, upon the circumstance that the function f;(D) is of an order not lower than
the order of the original equation. It may however be of a lower order, as would

take place in the first of the examples above given, if a, mstead of being 1 were zero

and b, were also zero.
Let the equation then be (Ex. 4.),

d%u du
2?5+ (1+by2)7-4-au=G.

Referring to (2.), we have, in the first instance,

(D— l)(e"u)+(cz(D —-2)(D—-3)+45,(D—2) +a0)(e”u>=G,

Du+(cZ(D-—1)(D—2)+b1(D—l)+ao)(e°u)=e“’G;
so that £(D) is of the first order, and the root is zero.

or
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The only complementary function to be obtained is therefore

1 1
u= cl{l — a3 ag(by+ag)a”— 53 ag(by+ap) (1.2¢,+2b, +-ap)a?

+534 ao(bl+ao>(1.2c2+2bl+ao)(2-3c2+3bl+ao)x4-...},

a series which is divergent, but which, as will also be seen afterwards, is finite when
the constant coeflicients are connected by the formula (p— 1)pc,+pb,+a,=0, p being
any positive integer.

Further, it may happen that the series obtained by the process, even when they
afford a complete solution in respect of the number of constants, are divergent for all
or for some values of #. This may evidently be the case in the solution of the second
of the examples above given; for the law of the coefficients, as we advance in the
series, approximates to A, =—g¢qA,, _,.

In these cases, other solutions in series may be obtained by resolving the equation
in finite differences in a series of terms of the form H,,, instead of H,_,. In order
to effect this, all that is necessary is to write 0+ for 4, (r being the order of the
equation in finite differences), and to divide by the factor of the last term instead of
the factor of the first term; or in other words, we must pass ¢° outside the functions
in (2.), and multiply by ¢~ ; so that this equation now assumes the form

LoDYuf,_ (D) (%) +fr_o(D) (eu) +.. . =G ;
and the equation in finite differences is
.f;-(o)ue+f;—1((’)uo+1 +f —2(9)ue+2+ e =Gyprpe

We have now to inquire for the roots of f,£==0; the incipient term is ( £,(D))~'(*"*Q),
which call II,; and the particular solution will be found to be

w=by(D)H,46~4,(D)H,44,(D)H, 4.4+, (D)H, +...,
where

Yo(D)=1, and f,(D—m)(D) +f, . (D—m)d,,(D)+...=0

is the law of the formation of the operative functions.

The substitution of the roots of f,¢ successively for D gives the law of formation of
the complementary series.

Taking the last example, the transformed equation now becomes

(e,D(D—=1)+b,D+a,)u+ (D4 1) (%) =¢*G.
Let the roots of £,¢ or ¢,t(t—1)+b,¢{-+a,=0, be B, and B,.
The first complementary series is

2P (At A~ 4. A ™),
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where A,=1, and £,(3, —m)A,+ (B,—m-+1)A,_,=0 is the law of formation ; the series
then are

,__Bl L, —1 131 51_1 -2 {31 ﬂx"l ﬁl -t
C’{” T D E ey ™ TR AR D S +}

=+ c,{ similar function of 3,

which is, (since f,(3,—n)=n(n-+1)c,—2nB,—nb,),

ﬂl - ﬁl ﬁl—l -
Bl — 1 Bl 8i—2
Cl{"' =50 35, —0p, =5, 556,— 4B, =0

B, Bi—1 Bi—2 -
6= 2B, =5, 2.30,— 1B, — 25, 3.46,— 6B, —3b, T j

+c,{ similar functionof 8, . . . . . . . . . L

When 3, or 3, is a positive integer, one of these series is terminable ; and if both
are positive integers, the series derived from the smaller root is terminable, and the
other gives no result, the coefficients becoming infinite. The first of the series will
then be found to give the same result as that produced from the divergent series
(which is evidently terminable in form in the case indicated), except that it begins at
the other end. In this case the other complementary solution can be found in finite
terms by reducing the order of the equation.

The particular solution is

D D-1
u=H,— ﬁ(D )H +a~2 FID=1) £(D—2) H-—...,
“H, being (f.(D))~'(cG).

Let us now return to example 2, the solution of which, as above found, is in some
cases divergent.

The transformed equation now becomes

(q(D+2)24r)u+p(D+2) (e %) + ((D+2)%2—r2) (7*u) =*G.
Roots of f,¢=20 are —2i\/ (2), which call 3, and 3,.

First complementary series,

ot (At 524,
where

A,=1, and (¢9(8,—m—+2)’+r)A,+p(Bi—m~+2)A, .+ ((Bi—m+2)’—r)A, _,=0,
is the law of formation ; and the second complementary series is the same, using the
other root with a different constant.

In like manner the particular solution is easily represented.

16. We are now in a position to discuss the character of the various series obtained
by this process with reference to their convergency or divergency, a subject of the
highest importance to the value of the process. The investigations which follow,
will, it is apprehended, be found to afford a complete test of the nature of the series.
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In general, it will of course be understood that these researches, as to convergency
and divergency, relate only to the complementary series, or in other words, to equa-
tions deprived of their second member; nevertheless they will to a great extent, if
not throughout, apply to cases in which the second member is in the form of integer
powers of x or of log «.

1st. When in the set of functions

Jo(D), £i(D), fu(D), ... [,-«(D), f(D),
the function f,(D) is of a higher dimension with regard to D than any other of the
set, or is what we shall here call the dominant function, the solution of the equation
can always be found in a convergent series of ascending powers of «; and if in such
a case we solve the equation in a series of descending powers of x, which we can do
if we please, that series is certainly divergent.
This is immediately apparent from the consideration of the law of the coefficients

JiBitm)An+fi(BiAm) A, ...+ (B Fm) A, =0
which, as m increases without limit, approaches to the form
m
Am= _%7—71« m—1 ;QZ m—2" 2"1 m—ry OF m'Am’—'—"_an—lAm—l_bﬂ——lAm—?_""’
assuming that all the functions are only one degree lower than A,,, which is the least
favourable case for convergency. Therefore, if the largest of the terms of the right-

hand side of this equation be /,_,A,,_,, we have

A<=ty

m—p 3

and we can therefore arrive at a point in the series at which the ratio of the coeffi-
cient of o™ to that of ™7 diminishes without limit.

It will also be observed that the series introduced by two or more equal roots are
of the same character as the original series from which they are derived ; for, A, being

of the form ¢(3,+m), we have é‘; —LZA and when A,,_, is of a higher order with re-

. dA,,
ference to m than A,,, dz} is also of a higher order than —— 3 and so for the other dif-

ferential coefficients.

We have now merely to inquire what must be the form of the original equation
that fi,(D) may be the dominant function. Referring to (2:), we see that it is neces-
sary that the factor of the highest differential coefficient of » should contain one term
only. If this factor be 1 or #, no restriction need be imposed on the succeeding

factors. If it be @2, the factor of the next lower diﬂ'erential coefﬁcient must not
dr—1

contain an absolute term ; and generally, if 22 be the factor of T ,,, the factor of T

. -2,
must begin with a term not lower than 27~*, that of 715;,:% with a term not lower than

2?72, and so on.
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. . dr '
In short, all equations where # does not enter into the factor of d:TZ’ and all equa-

tions of the form
d™u dr—lyu dr—2y
mpm-l- (ka? - lar4..) ‘7‘”—,,:;+(hnwp'2+...) W—I—....:O,

where p is a positive integer, are soluble in convergent series of ascending powers of .
The third example above given is an instance of this form.
2ndly. When in the set of functions

SiD), fraa(D), ... i(D), fu(D),

the function f,(D) is the dominant function, the solution of the equation can always
be found in a convergent series of descending powers of »; and if in such a case we
solve the equation in a series of ascending powers of x, that series is certainly diver-
gent,

This is apparent, as before, from the consideration of the law of the coefficients,

f;(]gl_m)Am—l-fv—l(ﬁl—m)A —-l+'“+.f:)(61—m)Am—r=O:
which, as m increases without limit, approaches to
mAmzhn-lAm—-l_kn——lAm-—2+“'

in the least favourable case for convergency.

On proceeding to inquire what must be the form of the original equation, we see
again that it is necessary that the factor of the highest differential coefficient of u
should contain one term only. If this be 27, then the other restrictions are, that the
factor of the next differential coefficient must stop at 2?~', that of the next at x7—2,
and so on.

In short, for all integer values of p the equation

dn dn—l d"‘—2
a? Eﬁ‘l" (an—l +bn—1‘r+ . '+Ifn‘1’p_l) dmn—?_l- (an—2+bn——2‘z'+ . '+h _21,17-2) d'z.n—i:—l— . ‘=0

is soluble in a convergent series of descending powers of ». The 4th example above
given is an instance of this form.
3rdly. When in the set of functions

SiD), £iD), ...fea(D), SuD),

the functions f,(D) and f,(D) are of the same dimensions, and are both dominant
over all the other functions, the solution of the equation can be found in a series of
ascending powers of x, which for some values of « is convergent, and for other values
of x is divergent ; and the solution can also be found in a series of descending powers
of « which is divergent for all values of x for which the other series is convergent,
and convergent for all values of x for which the other series is divergent.

For in the ascending series the law of the coeflicients approaches the form, (the

MDCCCL. 20
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coefficient of the highest power of m in fym being 1, and that in f,m being Z,,)
Am= - lnAm—n

and in the descending series the law approaches to
LA,=xA,_,.

The former series is therefore convergent for all values of 2 numerically less than

(l,,)—%, and divergent for all values of x numerically greater than this limit; and the

latter series is divergent for all values of  numerically greater than this quantity,
and divergent for all values of x numerically less.

The equations to which this rule is applicable are of the forms, (p' being less
than p,)

an , ’ n—1 n—2,
(27 4-107) G (st oy @7 G (Gt b ™) Tt =0,
and

dn dn—1 , dr—2
(an+ l"xp) 351;—’- (an—l + bn-—-lw+‘ . +k -l‘rp—l) %ﬁ;:+(an—2+ .. +hn—2‘rp_z) —dF—-uE—I_ b ‘=0'

The second example above given is an instance of the first of these forms.
4thly. When in the set of functions

JuD), fi(D), ... (D), SD),

one or more of the intermediate functions is or are of the same order as the extreme
functions f,(D) and f,(D), or as the highest of these two when they differ in dimen-
sions, the series obtained by the above processes will be divergent for some values of
x, and we have not as yet any method of deriving a convergent series corresponding
to these values; and if one or more of the intermediate functions be of a higher
dimension than the extreme functions, the series obtained by the above processes will
certainly be divergent.

These remaining cases therefore sever into two species; first, where some of the
intermediate functions are of the same order as the highest of the extreme functions;
secondly, where one or more of the intermediate functions are dominant.

The first of these species includes equations of the two following forms :—

(@b A D27) Aot (@27 by 2?0 ) T (a0 Ju=0,

in which there can be no function higher than £,(D); and
d™u dr—1y
(a,+b,2+..+127) d—m,;+(an_1+b,,_l.z'+..—I—k,,_,x”") W+...=O,
in which there can be no function higher than f£,(D).
In these cases it will easily be seen that the law of the coefficients of the ascending
series, as m increases without limit, approximates to

aA,+b A, +...+1A, =0,
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and the series therefore approaches without limit to a recurring series, in which the
constants of relation are

and the denominator of the rational fraction, to which the residue of the series ap-
proaches, is

;—”(af,,—kb,,x+..+l,,mp).
In the descending series, the law of the coefficients approximates to
lnAm+knAm—1 + . +anAm—p= O)

and the series approaches without limit to a recurring series, in which the constants
of relation are

and the denominator of the rational fraction, to which the residue of the series ap-
proaches, is

1
I (a,+bx+ ..+ 1,27).

When f,(D) is higher than f,(D), the ascending series alone can be used ; when f,(D)
is higher than f,(D), the descending series alone can be used ; and when f,(D) and
J.(D) are of the same dimension, either may be used ; and the approximations above
referred to render it probable that these series, notwithstanding that they may be
divergent, are the developments of continuous algebraical expressions.

The second of the species above referred to includes all equations which are ex-
cluded from the preceding forms ; that is, all forms which transgress both the restric-
tions to which the equation in the third case is subjected.

Of these forms, the solutions, whether obtained in ascending or in descending series,
are always divergent ; and the divergency appears to be of an extreme and unmanage-
able character. In this case we have an intermediate dominant function ; and the
convergent solutions might, from considerations of analogy, be presumed to be series
infinite in both directions, the roots of the dominant function determining the inci-
pient terms. :

The treatment of these forms requires the solution of the equation in finite dif-
ferences

AR+ Qe+ P.Ir“x+1+uz+ P, 4+ Qu, .+Ru, s+ = zen
not starting from either of the two extreme terms, as is done above; but from the
term wu,, so as to get a result in the form
w,=..+M_,G,,,+M_G,,,+MG,+M,G,_,+M,G,_.+..
It would probably not be difficult to show that such a solution exists; but I have

not found one in a form available for the purpose to which it is desired to be applied.
202
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17. Throughout the preceding investigations, the series obtained by the processes
here displayed undergo a modification of form in the event of the expression fit or
Jft, as the case may be, having one or more sets of imaginary roots.

Let there be a couple of such roots of the form ¢4/ —1. In the ascending
series these roots give

e B (A A+ A A )
¢ *'7(B,4+-B,2+B,2*+ .. +B,a"+. D

foletm4Ba/ —=DA, +fi(et+m+B/—1)A,_,+...=0
So(e+m—B/—1)B,+f(e+m—By/=1)B,_,+...=0

are the respective laws of formation.
It is apparent, therefore, that if A,, be of the form ¢(z+B./—1), B,, is of the form
o(z—p/~1).
Making c,=c,, and remembering that
2#V " faFY"1=2 cos (B log x)
afY T — x-#'=1=24/—1 sin (8 log @),
the sum of the two series gives the double series,

2clx“<c0s (Blogx){A,+B,+ (A, +Blz+..+(A,.+B,)a"4..}
++/ = 1sin (Blog ) {A,—B,+(A,—B)a+..4+ (A, ~B,)a"+..});

which is necessarily real, since A,,+B,, is purely real, and A,,— B,, is purely imaginary.
Making now ¢,=—c,, the sum of the two series gives another double series, (making

Cﬂ:—k\/'——ln)
2kx“(\/:—i—cos (Blog x){A,—B,+(A,—B)z+..4+(A,—B,)a"+..}
+ sin (Blog ) {A,+ B+ (A +B)a+.. 4 (4,4B,)a"+..}),

which is likewise real.

The descending series may be treated in a similar manner.

18. Most of the examples to which the preceding processes are applied have been
taken from the paper in the Philosophical Transactions for 1844, in which Mr. BooLe
developed his new General Method in Analysis, with which the subject matter of the
present paper is closely connected, though the methods exhibited are distinct ; unless
indeed it should prove, that the interchange of the symbol of operation and the inde-
pendent variable, and the general relation exhibited by Mr. BooLe’s fundamental
theorem of development connecting any system of linear differential equations with
a corresponding system of equations in finite differences, are merely different repre-
sentations of a part of some more general method or process.

The principal difference in results, so far as concerns the solution in series of linear
differential equations, appears to be, that in this paper the law of relation of the

where

and
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coefficients of each series is distinct, and substantially the same in form for all; and
that it is not necessary to have recourse to the method of parameters in the cases of
equal roots, or in the case of there being a term G on the right-hand side of the
equation. In the case of imaginary roots, the laws of the series are in the first instance
distinct from each other, and afterwards combined in couples. ‘

19. The investigations contained in the latter part of this paper reduce the problem
of the integration in finite terms of the general linear differential equation with
rational coeflicients, to the finding of an algebraical expression representing the deve-
lopment

A+Ac+Al+....F A2 ..,

where A,=1, and the law of relation is
ﬁ)”lAm_k/.lmAm—l +f;mAm—2+ .. -I—f;.mAm_,.——"'—'O 5

the functions f,f,f...f. being known specific functions. The series to be summed
closely resembles a recurring series ; it differs from it in this particular, that the law
of relation, instead of being constant, has a uniform and simple variation as it pro-
gresses along the series. If the rational coefficients should be themselves infinite
series, the process still applies, the only difference being that each term would be
formed from all the preceding terms, instead of being formed from the » immediately
preceding terms, or from all the preceding terms when the number of them is less
than .

In those cases in which the equation is solnble in finite terms by known methods,
we are enabled to assign the algebraical expression for the series ; a result which may
be used for the discovery of generating functions.

Thus, taking the general equation of the first order,

d
(@+bates +..+1a) T +(a+ba e+ ..+ ket u=0,
we see that
_ /‘f”a0+bo.r+ s ka1

0 g+t . +hat M=A.0+A1-Z'+A2.Z’2+..+Am1’m+...,

€

where A,=1, and the general law of the series is
amA,~+ (b, (m—1)+a)A,_+(c,(m—2)+b)A, .+ ...(L{(m—n)+k)A,,_,=O0.
If we take the general equation of the second order, (
d? ds
(a2+b2m+ oo+ 1z") d—xi‘; +(a,+bx+ .. k") ZZ + (@y+bx+ .. + b ?)u=0,
the law of the series will be
am(m—1)A,,+ (b,(m—1)(m~2)+a,(m—1))A,,_,+ (c;(m—2) (m—3)+b,(m— 2)+a)A, .+ ..

and generally, in equations of the nth order, the law of relation involves the nth
power of m, the number of the term sought for. Thus the determination of soluble
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cases of linear equations resolves itself into the inquiry, in what cases can a series
whose scale is of the nth order be resolved into a number of series whose scale is of
the first order.

20. I have not thought it necessary here to extend these solutions in series to
linear partial differential equations. The process by which the extension can be
made is well known, and has no peculiar relation to the methods here developed.



